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Abstract Chiral Schwinger model with the Faddeevian anomaly is considered. It is found
that imposing a chiral constraint this model can be expressed in terms of chiral boson. The
model when expressed in terms of chiral boson remains anomalous and the Gauss law of
which gives anomalous Poisson brackets between itself. In spite of that a systematic BRST
quantization is possible. The Wess-Zumino term corresponding to this theory appears auto-
matically during the process of quantization. A gauge invariant reformulation of this model
is also constructed. Unlike the former one gauge invariance is done here without any exten-
sion of phase space. This gauge invariant version maps onto the vector Schwinger model.
The gauge invariant version of the chiral Schwinger model for a = 2 has a massive field
with identical mass however gauge invariant version obtained here does not map on to that.

Keywords Chiral QED · BRST invariance · Faddeevian anomaly

1 Introduction

Symmetry plays a fundamental role in physics. Some times symmetry of a given theory
may be broken and that has a profound consequences. Gauge symmetry of a theory is of
particular interest in this context. Absence of gauge symmetry invites anomaly in a theory.
There have been considerable efforts in the understanding of anomaly in quantum field the-
ory [1–14]. The studies of chiral Schwinger model and anomalous Schwinger model [11]
are worth mentionable in this respect. It is the anomaly that removed the long suffering of
chiral Schwinger model from non-unitarity. Credit went to Jackiw and Rajaraman—those
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who offered a consistent analysis of this model in a gauge non-invariant manner [1]. How-
ever a gauge invariant version is always favorable because of its increased symmetry. This
work is an illustration on gauge as well as BRST invariance of chiral Schwinger mode with
Faddeevian [5, 6] type of anomaly.

In terms of constraint [15], a gauge invariant theory is defined as a theory with first class
constraint and the presence of second class constraints indicate the breaking of this invari-
ance. The conversion mechanism of second class constraints into a first class was introduced
initially by Faddeev and Shatashvili in [6]. The formalism was extended further by Batalin,
Fradkin and Vilkovisky [16–20] and became amenable for obtaining BRST invariant effec-
tive action. It is known so as BFV formalism. There have been attempts for this conversion
in different approaches too. The approaches basically fall into two independent classes. In
one class extension of phase space through the introduction of auxiliary fields is required
[16–22]. The other class however does not require this extension [23, 24].

Study of free chiral boson [4, 25–28] as well as gauged chiral boson [8–10, 26] are very
interesting in connection with the restoration of gauge invariance because of its peculiar
constraint structure. To be precise chiral constraint1 shows nonvanishing Poisson bracket
with itself. Gauge invariant reformulation of free chiral boson and gauged chiral boson are
considered by several authors in different time [20–24, 29, 30]. It is known that two in-
dependent version of gauged chiral boson are available in the literature. The oldest one is
the version proposed by Jackiw and Rajaraman [1]. We should mention here that Hagen
initially gave the chiral generation of Schwinger model [31]. The model however failed
to maintain the unitarity. Jackiw and Rajaraman saved the model introducing anomaly [1]
within it and gave a consistent hamiltonian description of that. Mitra suggested an alter-
native gauge non-invariant version of gauged chiral boson [9, 10]. The anomaly of which
corresponds to Faddeevian type [5–7] where gauss law constraint gave nonvanishing Pois-
son bracket among itself. The model attracted several attention because of this special type
of constraint structure.

BRST invariant reformulation of Jackiw-Rajaraman version of chiral Schwinger model
is done in [20, 29]. However the gauge (BRST) invariant reformulation is lacking for the
chiral Schwinger model where anomaly is Faddeevian like. It would be worthy to have a
systematic development where gauge invariance gets restored and the Wess-Zumino term
comes out automatically during the process. With this in view and also as a pedagogical
illustration of the BVF formalism effort has been made to obtain a BRST invariant effective
action of this model. The work will certainly demonstrate the power of BFV formalism
once more. This new study would be instrumental for future studies towards unitarity and
renormalization of this model. Gauge invariant reformulation of this model also carried
out in its usual phase space using Mitra- Rajaraman prescription in order to have a better
feeling about the difference between gauge invariance in the usual phase space and the
extended phase space. In [32], Shatashvili considered the non-Abelian version of gauge
invariant chiral Schwinger model where he observed an special feature in connection with
the reduction of interacting degrees of freedom of this model for a = 2. That work also
showed that the mass term in that was identical to the mass term of the model considered
here for that specified value of a. At the first sight one may think that these two models are
identical but that is not the case. To get a clear picture we compare our present development
with the work of Shatashvili [32].

1Chiral constraint is a relation between the momenta and coordinate of the chiral boson. Mathematically it is
T (x) = πφ − �′ ≈ 0. The Poisson bracket between T (x) and Ty is [T (x), T (y)] = −2δ′(x − y).
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The paper is organized as follows. Section 2, contains a brief review of the model in
connection with the bosonization of the fermionic version of chiral Schwinger model and
imposition of a chiral constraint to express it in terms of chiral boson. In Sect. 3, a brief
introduction of the BFV formalism is given and then it is applied to this model to obtain
the BRST invariant reformulation of that. Mitra-Rajaraman prescription is used in Sect. 4 to
obtain a gauge invariant reformulation of the same model. In Sect. 5, a comparison is made
between the result obtain in Sect. 4, and the known gauge invariant version of the usual
chiral Schwinger model for a = 2. Section 6 contains a brief discussion over the work.

2 Bosonization of Fermionic Model and Imposition of Chiral Constraints

Chiral Schwinger model is described by the following generating functional

Z[A] =
∫

dψdψ̄e
∫

d2xLf , (1)

with

Lf = ψ̄γ μ[i∂μ + e
√

πAμ(1 − γ5)]ψ
= ψ̄Rγ μi∂μψR + ψ̄Lγ μ(i∂μ + 2e

√
πAμ)ψL. (2)

The right handed fermion remains uncoupled in this type of chiral interaction. So integration
over this right handed part leads to field independent counter part which can be absorbed
within the normalization. Integration over left handed fermion leads to

Z[A] = exp

[
ie2

2

∫
d2xAμ

[
Mμν − (∂μ + ∂̃μ)

1

� (∂ν + ∂̃ν)

]
Aν

]
. (3)

Mμν = agμν , for Jackiw-Rajaraman regularization where the parameter a represents the
regularization ambiguity and

Mμν =
(

1 −1
−1 −3

)
δ(x − y),

for an alternative version proposed in [9, 10]. Writing down the generating functional in
terms of the auxiliary field φ(x) it turns out to the following

Z[A] =
∫

dφei
∫

d2xLB , (4)

with

LB = 1

2
(∂μφ)(∂μφ) + e(gμν − εμν)∂μφAν + 1

2
e2AμMμνAν

= 1

2
(φ̇2 − φ′2) + e(φ̇ + φ′)(A0 − A1) + 1

2
e2(A2

0 − 2A0A1 − 3A2
1). (5)

Here ε01 = −ε01 = 1 and the Minkowski metric gμν = diag(1,−1).
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Equation (5) was initially found in [9] where Mitra termed it as chiral Schwinger model
with Faddeevian regularization. In [9], we find that the Gauss law constraint of this theory
is

G = π ′
1 + e(πφ + φ′). (6)

It is found there that the Poisson bracket between G(x) and G(y) is

[G(x),G(y])] = 2δ(x − y)′. (7)

This Poisson (7) was found to gave the vanishing contribution for the usual chiral Schwinger
model [1]. Faddeev initially noticed that anomaly made Poisson bracket between G(x) and
G(y) nonzero [5, 6]. The constraint became second class itself and gauge invariance was
lost. He, however, argued that it would be possible to quantize the theory but in this situation
system may posses more degrees of freedom.

From the standard definition, the momentum corresponding to the field φ is found out to
be

πφ = φ̇ + e(A0 − A1). (8)

The following Legendre transformation

HB =
∫

d2x[πφφ̇ − LB], (9)

leads to the hamiltonian density

HB = 1

2
[πφ − e(A0 − A1)]2 + 1

2
φ′2 − 2eφ′(A0 − A1)

− 1

2
e2(A2

0 − 2A0A1 − 3A2
1). (10)

In order to suppress one chirality at this stage we impose the chiral constraint

ω(x) = πφ(x) − φ′(x) ≈ 0. (11)

It is a second class constraint itself since

[ω(x),ω(y)] = −2δ′(x − y). (12)

After imposing the constraint ω(x) ≈ 0, into the generating functional we arrived at the
following

ZCH =
∫

dφdπφδ(πφ − φ′)
√

det[ω,ω]ei
∫

d2x(πφφ̇−HB)

=
∫

dφei
∫

d2xLCH , (13)

with

LCH = φ̇φ′ − φ′2 + 2e(A0 − A1)φ
′ + 2e2A2

1. (14)

We obtained the gauged lagrangian for chiral boson from the bosonized lagrangian with Fad-
deevian regularization [9] just by imposing the chiral constraint in its phase space. Harada in
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[8], obtained the same type of result for the usual chiral Schwinger model with one parame-
ter class of regularization proposed by Jackiw and Rajaraman [1]. The lagrangian (14) can
be thought of as the gauged version of chiral boson described by Floreanini and Jackiw [4].
The constraint analysis and the phase space structure corresponding to this model is avail-
able in [10]. In Ref. [10], we found that the theory (14) describes a massive boson through
the equation

[� + 4e2]A1 = 0 (15)

with square of the mass m2 = 4e2. Equation (15) was interpreted there as the photon ac-
quired mass and the fermion got confined.

3 BRST Invariant Reformulation Using BFV Formalism

Before we apply BFV formalism on this model it would be useful for the reader to give
a brief introduction of the formalism. BRST invariance essentially means to enlarge the
Hilbert space of a gauge theory in order to restore the symmetry of a gauge fixed action in
that enlarged space. It is very effective when one tries to study the renormalization property
of a theory. One generally exploit the BRST symmetry instead of exploiting the original
gauge symmetry. The discovery of this symmetry raised the ghost field to a prominent posi-
tion. It mixes the ghost with the other fields of the theory and therefore all the fields including
the ghosts can be regarded as a different components of a single geometrical object.

The combined formalism of Batalin, Fradkin and Vilkovisky [16–20] for quantization
of a system is based on the idea that a system with second class constraint can be made
effectively first class in the extended phase space which finally helps to find BRST in-
variant effective action. The field needed for this conversion ultimately turns out into the
Wess-Zumino scalar with the proper choice of gauge condition, as pointed out by Fugi-
wara, Igarashi and Kubo [18]. What follows next is a brief description of the general BFV
formalism for obtaining a BRST invariant action.

Let us consider a canonical hamiltonian described by the canonical pairs (pi, q
i), i =

1,2, . . . ,N . The pairs are subjected to a set of constraints �a ≈ 0, a = 1,2, . . . , n, and it is
assumed that the constraints satisfy the following algebra [20, 21].

[�a,�b] = i�cU
c
ab, (16)

[Hc,�a] = i�bV
b
c , (17)

then n no of additional condition �a ≈ 0 with det[�a,�b] �= 0 have to be imposed in order
to single out the physical degrees of freedom. The constraints �a ≈ 0 and �a ≈ 0, together
with hamiltonian equation of motion is obtained from the action

S =
∫

dt[piq̇
i − Hc(pi, q

i) − λa�a + πa�
a], (18)

where λa and πa are Lagrange multiplier fields and these two satisfy the relation [λa,πb] =
iδa

b .
Now introducing one pair of canonical ghost field (Ca, P̄a) and one pair of canonical

anti-ghost field (P a, C̄a) for each pair of constraints an equivalence can be made to the
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initial theory with constraints in the reduced phase space. So the quantum theory can be
described by the partition function where the action [16–22] in its numerator will be

Sqf =
∫

dt[piq̇
i + πaλ̇a + P̄ aĊa + C̄aṖa − HBRST + i[Q,ψ]]. (19)

HBRST is the minimal hamiltonian [16, 17]as termed by Batalin and Fradkin, is defined by

HBRST = Hc + P̄aV
a
b Cb. (20)

The BRST charge Q and the fermionic gauge fixing function ψ are respectively given by
[20–22]

Q = Caωa − 1

2
CbCcU

c
abP̄

a + P aπa, (21)

ψ = C̄cχ
a + P̄ aλa, (22)

where χa’s are expressed through the gauge fixing condition

�a = λ̇a + χa. (23)

Let us now concentrate on the BRST invariant reformulation of the lagrangian (14). In
order to do that we need to know the constraint structure of the theory. The details of which
is available in [9, 10]. Here we are giving the relevant portion as required for our purpose.
In [10], we find that the momenta corresponding to the fields A0, A1 and φ are.

πφ = φ′, (24)

π1 = Ȧ1 − A′
0, (25)

π0 = 0. (26)

It is known that π0 = 0 and πφ = φ′ are the primary constraints of the theory.
The effective hamiltonian follows from the equations of motion is

HP =
∫

dx[HC + uπ0 + v(πφ − φ′)], (27)

where

HC = 1

2
π2

1 + π1A
′
0 + φ2 − 2e(A0 − A1)φ

′ − 2e2A2
1 (28)

Here u and v are two required lagrange multipliers. The preservation of the constraints leads
to two other constraints

G = π ′
1 + 2eφ′ ≈ 0, (29)

−2e2(A1 + A0)
′ ≈ 0. (30)

The multipliers u and v are found out to be

u = −(π1 + A′
0), (31)

v = φ − e(A0 − A1). (32)
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Therefore, the theory under consideration contains four constraints in its phase space. Pre-
cisely, the constraints are

ω1 = πφ − φ′ ≈ 0, (33)

ω2 = π0 ≈ 0, (34)

ω3 = π ′
1 + 2eφ′ ≈ 0, (35)

ω4 = −2e2(A1 + A0)
′ ≈ 0. (36)

These four constraints form a second class set and the closures of the constrains with respect
to the hamiltonian (27) are given by

ω̇1 = ω′
1, (37)

ω̇2 = ω3 − ω′
2 + eω1, (38)

ω̇3 = ω4 − eω′
1, (39)

ω̇4 = 2e2ω′
2. (40)

To obtain a BRST invariant reformulation we need to convert the second class set of
constraints into a first class set. With this in view, we introduce four auxiliary fields ψ , η,
πψ and πη and fields are such that they satisfy the following canonical condition

[η(x),πη(y)] = δ(x − y), (41)

[ψ(x),πψ(y)] = δ(x − y). (42)

The fields used here are known as Batalin-Fradkin (BF) fields. The constraints (33), (34),
(35) and (36), with some suitable linear combination of the BF fields get converted into first
class set as follows

ω̃1 = πφ − φ′ + πψ + ψ ′, (43)

ω̃2 = π0 − πη, (44)

ω̃3 = −2eψ ′ + 2eφ′ + π ′
1 − π ′

η, (45)

ω̃4 = −2e2(A0 + A1)
′ − 2e2η′. (46)

The above four first class constraints will be found consistent with the first class hamiltonian
if these new first class set satisfy the same closures as their ancestor did with the hamiltonian
(27). Precisely, the conditions are

˙̃ω1 = ω̃′
1, (47)

˙̃ω2 = ω̃3 − ω̃′
2 + eω̃1, (48)

˙̃ω3 = ω̃4 − eω̃′
1, (49)

˙̃ω4 = 2e2ω̃′
2. (50)

First class hamiltonian is obtained by the appropriate insertion of the BF fields within the
hamiltonian (27) and it is given by H̃=HP +HBF . Here HBF is a polynomial of ψ , η, πψ



2614 Int J Theor Phys (2010) 49: 2607–2620

and πη that extend the phase space respecting the closures (47), (48), (49) and (50). We find
that HBF for this system will be

HBF =
∫

dx[−2eηψ ′ + e(πψ + ψ ′)η + 1

2
(π2

η + π2
ψ + ψ ′2)]. (51)

We now introduce four pairs of ghost (Ci, P̄
i) and four pairs of anti-ghost (Pi, C̄

i) fields.
Four pairs of multiplier fields (Ni,Bi) are also needed. The pairs satisfy the following
canonical relations

[Ci, P̄
j ] = [P i, C̄j ] = [Ni,Bj ] = iδi

j δ(x − y), i = 1,2,3,4. (52)

From the definition we can write BRST invariant hamiltonian

HU = HBRST − i[Q,ψ], (53)

where HU is the unitarizing hamiltonian, Q is the BRST charge and ψ ’s are the gauge fixing
functions. Note that the BRST charge Q is a nilpotent operator and it satisfies the equation

Q2 = [Q,Q] = 0. (54)

The definition of Q in this formalism is

Q =
∫

(BiP
i + Ciω̃

i)dx, (55)

and the definition of gauge fixing function ψ is

ψ =
∫

(C̄iX
i + PiN

i)dx. (56)

The BRST invariant hamiltonian for the theory with which we are dealing with is

HBRST = HP + HBF +
∫

dx(−P̄1C
′
1 + P̄3C2 + P̄2C

′
2 + eP̄1C2 + P̄4C3

− eP̄ ′
1C3 + 2e2P̄ ′

2C4). (57)

It would be helpful to write down the generating functional that ultimately leads to an ef-
fective action with the elimination of some fields by Gaussian integration. The generating
functional reads

Z =
∫

[Dμ]eiS. (58)

Here the expression of S is

S =
∫

d2x[πφφ̇ + π1Ȧ1 + π0Ȧ0 + πψψ̇ + πηη̇ + P̄i Ċ
i + C̄i Ṗ

i + BiṄ
i − HU ], (59)

where [Dμ] is the Liouville measure in the extended phase space. We are now in a position
to fix up the gauge conditions

χ1 = πφ − φ′, (60)
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χ2 = −Ṅ2 + A0, (61)

χ3 = B3

2
− A′

1, (62)

χ4 = πη − Ṅ4. (63)

When we substitute the simplified form of Hf inal obtained after plugging the gauge fixing
conditions (60), (61), (62) and (63) in the action (59), we get the explicit expression of S:

S =
∫

d2x

[
πφφ̇ + πψψ̇ + πηη̇ + π1Ȧ1 + π0Ȧ0 + P̄i Ċ

i + C̄i Ṗ
i + BiṄ

i

−
(

π2

2
+ πA′

0 + eφ′(A0 − A1) + 2e2A2
1 − π0(π1 + A′

0) + πφφ′

− eπφ(A0 − A1) − eηψ ′ + eπψη + 1

2
(π2

η + π2
ψ + ψ ′2) + Biχ

i + ω̃iN
i

− P̄iP
i − P̄1C

′
1 + P̄3C2 + P̄2C

′
2 + eP̄1C2 + P̄4C3 − eP̄ ′

1C3 + 2e2P̄ ′
2C4

− C3C̄
′′ − C̄2Ṗ

2 − C̄4Ṗ
4 + 2e2C4C̄4 − 2C ′C̄1 − e2C2C̄2

)]
. (64)

Here i runs from 1 to 4. Our next task is to simplify (58) through the elimination of some
fields and that will lead us to our desired result. A careful look reveals that here exists a
simplification ∫

d2x(BiN
i + C̄i Ṗ

i) = −i

[
Q,

∫
d2x(C̄iṄ

i)

]
(65)

with be Legendre transformation Bi → Bi + Ṅ i . However the simplification correspond-
ing to i = 1 suffices in this situation. More simplification follows from the elimination of
the fields π0, π1, πη , B1,B2,B4,A0,N

1, N2,N4,P1, P̄
1,P2, P̄ 2,P4, P̄

4,P1, P̄
1, C1, C̄

1,C2

and C̄2 by Gaussian integration. Ultimately we reach to a very simplified form of the gener-
ating functional (58) that contains the following effective action in its numerator.

Seff =
∫

d2x(φ̇φ′ − φ′2 + 2e2A2
1 − ψ ′2 − ψ̇ψ ′ + 1

2
(Ȧ1 − A′

0)
2

+ 2eφ′(A0 − A1) − 2eψ ′(A1 + A0) + ∂μBAμ + 1

2
αB2

+ ∂μC̄∂μC. (66)

We have used few redefinition of fields, e.g., N3 = A0 and P 3=Ċ3 to reach to the result (66).
Since after elimination there is no other B’s and C’s except B3 and C3 we are free to read
them as B and C. It is now time to check the invariance of the action (66). A little algebra
shows that the action is invariant under the transformation

δA1 = −λC ′, δA0 = δN3 = λĊ,

δψ = λC, δC̄ = λB, δC = 0.
(67)

It is to be mentioned that the fields satisfy the following Euler-Lagrange equation

∂−φ − ∂+ψ − 2eA1 = 0. (68)
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We can identify easily the Wess-Zumino term for this theory which is

Lwz = −ψ̇ψ ′ − ψ ′2 − 2eψ ′(A0 + A1). (69)

It is interesting to see this automatic appearance of this Wess-Zumino term during the
process of obtaining the BRST invariant action. One point we should mention here that
the choice of gauge condition is very crucial. One may miss to get Wess-Zumino term oth-
erwise.

4 Gauge Invariant Reformulation without Extending the Phase Space

The formalism of making a theory gauge invariant by the reduction of the number of second
class constraint was first developed by Mitra and Rajaraman [23, 24]. The formalism strictly
depends on the constraint structure of the theory. Depending on the constraint structure of
the theory different gauge invariant version is possible for a particular theory. No extension
of phase space is needed in this formalism. So the physical contents of all the gauge invariant
actions remains the same. In [23, 24], the authors gave a reasonably general theory relating
to a large class of systems with second class constraints to corresponding class of gauge
invariant systems having the same dynamical content. A gauge theory in a generalized sense
means a theory with some first class constraints. To covert it into an equivalent second
class system is well known. One generally fix the gauge, i.e., impose a suitable number of
gauge fixing conditions. These gauge fixing conditions together with the original first class
set of constraint form a second class set and the theory gets converted into an equivalent
second class system. An inverse procedure is suggested in [23, 24] where a formalism is
developed for construction of a gauge invariant system equivalent to a given second class
theory. The authors argued there as follows. If a dynamical system possess 2n constraints
and the constraints all together form a second class set and if n of these constraints are
found to have mutually vanishing Poisson brackets then these n constraints can be used as
gauge generator of the gauge invariant reformulation. The remaining n constraints may be
thought of as the gauge fixing condition. The hamiltonian needs the required modification
accordingly. So in [23, 24] the authors suggested to reduce half of the constraint from a
second class set of constraint retaining the first class set only in order to get the gauge
invariant reformulation. The obtained gauge invariant theory can be treated in the similar
way as any standard gauge invariant theory is treated. What follows next is the application
of the formalism in the presently considered mode.

To apply this formalism in a model it is essential to know the constraint structure of that
theory. In our case which is already given in Sect. 3. We have seen there that the phase
space of the model described by the lagrangian (14) contains four constraints. In Sect. 3,
those constraints are given in (33), (34), (35) and (36). Note that the combination ω2 ≈ 0
and ω3 ≈ 0 form a first class set. If we retain only these two constraints as stated above,
following the suggestion available in [23, 24], we require a modification of the hamiltonian
density of the second class system (27) in the following manner in order to get a first class
system.

H = 1

2
π2

1 + π1A
′
0 − e(A0 − A1)φ

′ + 2e2A2
1 + πφφ′ − eπφ(A0 − A1)

+ e(πφ − φ′)(A0 + A1) + 1

2
(πφ − φ′)2 + uπ0. (70)
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The modification certainly keeps the physical contents of the theory intact. This modified
hamiltonian density (70) contains only the two first class constraints ω2 ≈ 0 and ω3 ≈ 0.
The equation of motion with respect to the hamiltonian (70) are found out as follows

φ̇ = [φ, H] = πφ + 2eA1, (71)

Ȧ0 = [A0, H] = −u, (72)

Ȧ1 = [A1, H] = π1. (73)

A straightforward calculation leads to the lagrangian density corresponding to the first class
theory with which we are interested in.

L1 = πφφ̇ + π1Ȧ1 + π0Ȧ0 −
[

π2
1

2
+ π1A

′
0 + 2eA1πφ + πφφ′ − 2eA0φ

′

+ 1

2
(πφ − φ′)2 + uπ0 + 2e2A2

1

]
. (74)

After a little algebra the lagrangian density acquires a very simplified form

L2 = 1

2
(φ̇2 − φ′2) − 2e(A1φ̇ − A0φ

′) + 1

2
(Ȧ1 − A′

0)
2. (75)

The lagrangian density (75), is consistent with the hamiltonian density (70), and the equa-
tions of motion (71), (72) and (73). To see whether the lagrangian density (75) stems out
from the modified hamiltonian density (70) contains only the two first class (34) and (35) in
its phase space let us calculate the momenta corresponding to the field A0

π0 = ∂L2

∂Ȧ0
= 0. (76)

It gives back the primary constraint (35) and the preservation of this once again gives the
Gauss law constraint

G = π ′
1 + 2eφ′ ≈ 0. (77)

No other constraints come out from the preservation of (77). These two first class constraints
help us to construct the gauge transformation generator. The generator is given by

G =
∫

dx(λ1ω1 + λ2ω2). (78)

Here λ1 and λ2 are two arbitrary parameters. The transformations evolved out of the gener-
ator (78) for the fields φ, A1 and A0 respectively are

δφ = 0, δA1 = −λ′
1, δA0 = −λ2. (79)

A little algebra shows that under the transformation (79), the lagrangian (75) remains invari-
ant provided the parameter satisfy the relation

λ2 = λ̇1. (80)

A note worthy thing is that this transformation is equivalent to the transformation Aμ →
Aμ + 1

2e
∂μλ. There is some thing interesting that we must mention here. The first class
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lagrangian that comes out from our investigation is the bosonized lagrangian of the well
known vector Schwinger model [33, 34]. Here coupling strength is 2e. It does not come as a
great surprise because the theoretical spectrum of the model under consideration is identical
to the vector Schwinger model. To be precise, both the models contain the massive boson
with mass m = 2e.

We have mentioned earlier that the gauge invariant reformulation follows from this pre-
scription depends crucially on the constraint structure of the model. There are other possi-
bilities to get first class set of constraints from the set of constraints (33), (34), (35) and (36).
However that possibilities fail to give consistent first class theories.

5 Comparison of the Result Obtained in Sect. 4 with the Gauge Invariant Chiral
Schwinger Model for a = 2

Let us compare our result with the work of the Shatashvili [32] because seeing their apparent
similarities at a first glance one may think that these two results are identical. But a careful
look revels that this is not so. In his work Shatashvili considered the non-Abelian gauge
invariant version of the chiral Schwinger model and showed that the interacting degrees of
freedom gets reduced if the choice a = 2 is made. For a = 2, the mass term of Shatashvili’s
model become identical to our model but there lies a basic difference which we would like to
address. Here we consider the gauge invariant Abelian bosonized version of that model [35]
because this version would be compatible for comparison with our work. Unlike the non-
Abelian version the Abelian version it is exactly solvable too.

It is described by the lagrangian density

L = 1

2
(∂μφ)(∂μφ) + e(gμν − εμν)∂μφAν + 1

2
ae2AμAμ − 1

4
FμνF

μν + LWESS, (81)

where LWESS is given by

LWESS = 1

2
(a − 1)(∂μη)(∂μη) + e[(a − 1)gμν + εμν]∂μηAν. (82)

The lagrangian is invariant under the gauge transformation Aμ → Aμ + 1
e
∂μ�, φ → φ +�,

η → η − �. The momenta corresponding to the fields A0, A1 and φ and η are

πφ = φ̇ + e(A0 − A1), (83)

π1 = Ȧ1 − A′
0, (84)

π0 = 0, (85)

πη = (a − 1)η̇ + e[(a − 1)A0 + A1]. (86)

Equation (83), (84) and (85) are independent of the parameter a. The choice a = 2 brings
change only in (86) and with that choice that turns into

πη = η̇ + e(A0 + A1). (87)

A straightforward calculation shows that the canonical Hamiltonian density for the model
with a = 2 is
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Hc = 1

2
[π2

1 + π2
φ + φ′2] − eA1(πφ − φ′) + 2e2A2

1 + 1

2
[π2

η + η2] − eA1(πη + η′)

− A0(π
′
1 + e[(πφ − φ′) − (πη + η′)]. (88)

The phase space of the model contains the following two constraints [35]

�1 = π0 ≈ 0, (89)

�2 = π ′
1 + e(πφ − φ′) − e(πη + η′) ≈ 0. (90)

The constraint (90) appears as a secondary constraint in order to preserve the constraint (89).
The two constraints are first class. The first class constraints shows a clear indication of
reduction of degrees of freedom because to quantize the theory two gauge fixing conditions
are to be needed. Bosonized version of Vector Schwinger model (75), appeared out as the
gauge invariant version of chiral Schwinger model with Faddeevian anomaly in Sect. 4,
contains the following two constraint

ωV S1 = π0 ≈ 0, (91)

ωV S2 = π ′
1 + 2eφ′ ≈ 0. (92)

The Hamiltonian density of this bosonized version of vector Schwinger model (75) comes
out to be

HV S = 1

2
(π2

1 + π2
φ + φ′2) + π1A

′
0 + 2e(A1πφ − A0φ

′). (93)

It is true that both the models are gauge invariant and the massive fields which comes out
form (93) and (88) looks almost identical. Square of the mass of the boson in each case is
m2 = 4e2. However the Hamiltonian (88) cannot be made free from Wess-Zumino field η

using the constraints (89) and (90) and the constraints (89) and (90) also do not map on to
the constraints of the vector Schwinger model. On the contrary the Gauge invariant version
as obtained in (75), using Mitra-Rajaraman prescription, does not contain this type of field.
Here gauge invariance is resulted in the usual phase space.

6 Discussion

Gauge invariant reformulation of chiral Schwinger with Faddeevian anomaly has been car-
ried out in two different directions. In the first case BFV prescription [16–20] is followed
which needs an extension of phase space. The process certainly keeps the physical contents
of the theory intact. The fields needed for the extension keep themselves allocated in the un-
physical sector of the theory. In this prescription we not only get a BRST invariant effective
action but also appropriate Wess-Zumino term appears automatically during the process. In
the second approach Mitra-Rajaraman prescription [23, 24] is followed to obtain a gauge in-
variant action. In this situation we have to be restricted on the gauge invariance only because
the formalism developed till now is not adequate to obtain BRST invariant action. In spite
of the existence of more than one possibilities only a particular possibility leads to a gauge
invariant action there. Surprisingly, the other possibilities fail to do so. Only that possibility
has explored to obtain gauge invariant reformulation which renders a very interesting result.
The gauge invariant model that comes out is the lagrangian of well known vector Schwinger
model [33, 34] and gauge invariance of which is obvious. It is conclusively shown here too.
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It is true that the gauge non-invariant version of this model under consideration too contains
a massive boson like vector Schwinger model [33, 34]. We have already mentioned it. But
the explicit mapping of this model onto the vector Schwinger model is a new and novel
result. The counting of degrees of freedom also found to be consistent. It would be interest-
ing to investigate how a particular Faddeevian regularized version of the chiral Schwinger
model maps onto the vector Schwinger model in its gauge invariant version. We compare
the gauge invariant lagrangian obtained in Sect. 4 with the gauge invariant version of the
Abelian chiral Schwinger model setting a = 2 in (75). Both the model is gauge invariant
and contains a massive field with the same mass. But for the former one gauge invariance
has occurred in its usual phase space whereas for the later it does occur in the extended
phase space.

References

1. Jackiw, R., Rajaraman, R.: Phys. Rev. Lett. 54, 1219 (1985)
2. Girotti, H.O., Rothe, H.J., Rothe, K.D.: Phys. Rev. D 33, 514 (1986)
3. Girotti, H.O., Rothe, H.J., Rothe, K.D.: Phys. Rev. D 34, 592 (1986)
4. Floreanini, R., Jackiw, R.: Phys. Rev. Lett. 59, 1873 (1987)
5. Faddeev, L.D.: Phys. Lett. B 154, 81 (1984)
6. Faddeev, L.D., Shatashvili, S.L.: Phys. Lett. B 167, 225 (1986)
7. Shatashvili, S.L.: Theor. Math. Phys. 60, 770 (1985), Theor. Mat. Fiz. 60, 206 (1984)
8. Harada, K.: Phys. Rev. Lett. 64, 139 (1990)
9. Mitra, P.: Phys. Lett. B 284, 23 (1992)

10. Ghosh, S., Mitra, P.: Phys. Rev. D 44, 1332 (1990)
11. Mitra, P., Rahaman, A.: Ann. Phys. (N. Y.) 249, 34 (1996)
12. Rahaman, A.: Int. J. Mod. Phys. A 12, 5625 (1997)
13. Rahaman, A.: Int. J. Mod. Phys. A 19, 3013 (2004)
14. Rahaman, A.: Int. J. Mod. Phys. A 21, 1251 (2006)
15. Dirac, P.A.M.: Lectures on Quantum Mechanics. Yeshiva University Press, New York (1964)
16. Fradkin, E.S., Vilkovisky, G.A.: Phys. Lett. B 55, 224 (1975)
17. Batalin, I.A., Fradkin, E.S.: Nucl. Phys. B 279, 514 (1987)
18. Fujiwara, T., Igarashi, I., Kubo, J.: Nucl. Phys. B 314, 695 (1990)
19. Batalin, I.A., Tyutin, V.: Int. J. Mod. Phys. A 6, 3255 (1991)
20. Kim, Y.W., Kim, S.K., Kim, W.T., Park, Y.J., Kim, K.Y., Kim, Y.: Phys. Rev. D 46, 4574 (1992)
21. Yoon, S.J., Kim, Y.W., Park, Y.J.: J. Phys. G 25, 1783 (1989)
22. Park, M.I., Park, Y.J., Yoon, S.J.: J. Phys. G 24, 2179 (1988)
23. Mitra, P., Rajaraman, R.: Ann. Phys. (N. Y.) 203, 137 (1990)
24. Mitra, P., Rajaraman, R.: Ann. Phys. (N. Y.) 203, 157 (1990)
25. Siegel, W.: Nucl. Phys. B 238, 307 (1984)
26. Bellucci, S., Golterman, M.F.L., Petcher, D.N.: Nucl. Phys. B 326, 307 (1989)
27. Imbimbo, C., Strominger, J.: Phys. Lett. B 193, 445 (1987)
28. Labastida, J.M.F., Permici, M.: Nucl. Phys. 297, 557 (1988)
29. Ghosh, S.: Phys. Rev. D 49, 2990 (1994)
30. Miao, Y.G., Zhou, J.G., Liu, Y.Y.: J. Phys. G 19, 1797 (1993)
31. Hagen, C.R.: Ann. Phys. (N. Y.) 81, 67 (1973)
32. Shatashvili, S.L.: Theor. Math. Phys. 71, 366 (1987), Theor. Mat. Fiz. 71, 40 (1987)
33. Schwinger, J.: Phys. Rev. 128, 2425 (1962)
34. Lowenstein, J.H., Swieca, J.A.: Ann. Phys. (N. Y.) 68, 172 (1971)
35. Miyake, S., Shizuya, K.: Phys. Rev. D 36, 3781 (1987)


	On the Gauge and BRST Invariance of the Chiral QED with Faddeevian Anomaly
	Abstract
	Introduction
	Bosonization of Fermionic Model and Imposition of Chiral Constraints
	BRST Invariant Reformulation Using BFV Formalism
	Gauge Invariant Reformulation without Extending the Phase Space
	Comparison of the Result Obtained in Sect. 4 with the Gauge Invariant Chiral Schwinger Model for a=2
	Discussion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


